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1. Operational Amplifiers

The term operational amplifier or “op-amp” refers to a class of high-gain DC coupled
amplifiers with two inputs and a single output. Some of the general characteristics of the
IC version are: [7]

• High gain, on the order of a million

• High input impedance, low output impedance

• Used with split supply, usually ± 15V

• Used with feedback, with gain determined by the feedback network.

• zero point stability

• defined frequency response

Their characteristics often approach that of the ideal op-amp and can be understood with
the help of the golden rules.

The Ideal Op-amp
The IC Op-amp comes so close to ideal performance that it is useful to state the charac-
teristics of an ideal amplifier without regard to what is inside the package. [7]

• Infinite voltage gain

• Infinite input impedance (re = dUe/ dIe →∞)

• Zero output impedance (ra = dUa/ dIa → 0)

• Infinite bandwidth

• Zero input offset voltage (i.e., exactly zero out if zero in).

These characteristics lead to the golden rules for op-amps. They allow you to logically
deduce the operation of any op-amp circuit.

The Op-amp Golden Rules
From Horowitz & Hill: For an op-amp with external feedback

I. The output attempts to do whatever is necessary to make the voltage difference
between the inputs zero.

II. The inputs draw no current.

properties of the Op-amp
Figure 1 shows the circuit-symbol of an Operational Amplifier. The Input of an Op-amp
is a differential amplifier, which amplifies the difference between both inputs.
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Figure 1: circuit-symbol of the OP-amp [8]

If on both inputs the same voltage is applied the output will be zero in the ideal case.
Whereas a difference leads to an output signal of

Ua = G(UP − UN )

with the differential-gain G. For this reason the P-input is called the non-inverting input
and labelled with a plus-sign and contrary the N-input called the inverting input labelled
with a minus-sign.

LM 741 OP
We are using the LM741 operational amplifier. The chip has 8 pins used to both power
and use the amplifier. The pinout for the LM741 are listed below:

pin name description

1 NULL Offset Null
2 V− Inverting Input
3 V+ Non-Inverting Input
4 −VCC Power (Low)
5 NULL Offset Null
6 VOut Output Voltage
7 +VCC Power (High)
8 NC Not Connected

Table 1: pinout for the LM741
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2. Circuits with Operational Amplifiers

2.1. Inverting Operational Amplifier

Figure 2: inverting amplifier circuit [8]

Calculation of output voltage

1. high input impedance re →∞: I1 = IN = I

2. the feedback attempts to make the voltage difference between the inputs zero: UP −
UN = 0V . We use therefore Kirchhoff’s node law to calculate the output voltage that
is necessary to lead UN to zero.

Ua = −IRN

Ue = IR1

}
⇒ Ue

R1
= − Ua

RN
= 0 ⇒ Ua = −RN

R1
Ue

The gain is thus g = −RN

R1
with a phaseshift of 180°.

This means that the OP acts in such a way that the output voltage Ua is adjusted so that
the negative input is set to UN = 0. The N-input acts thus like a ground.
If we assume the resistances to be general impedances the gain still remains the same, just
with different values: g = −Z2/Z1. This still holds even if the impedances mean a complex
circuits itsself.

We setup an operational amplifier with proportional gain of 10.
The electronic devices used are:

1. Z1 = 10.11 kΩ

2. Z2 = 100.2 kΩ

g = −Z2

Z1
= −100.2

10.11
≈ −10

The minus sign in the gain denotes the phase shift of 180° between input and output voltage.
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We want to record the amplification and phase shift spectrum. Therefore we scan the
amplification over the frequency range and take values at approximately equal distances on
a logarithmic scale. The phase shift is calculated using: ∆ϕ = 2πν ·∆T with time difference
∆T between the to signals on the oscilloscope. The plots are presented in figures 3 and 4.

The gain of an real amplifiers is not constant over the whole frequency spectrum as can be
seen in the figure 3. It starts to decrease rapidly at about 10 kHz. The measured phase shift
is shown in figure 4. The data has been checked, but we have really measured these values.
These values however do not represent the shape that would be expected. That would be a
change by 180° from 180° to 360° over the whole range.

Figure 3: gain spectrum of Inverting Amplifier

Figure 4: phase change spectrum of Inverting Amplifier
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2.2. Integrator

Figure 5: integrator circuit [8]

time dependence of output:

1. current depends on voltage: Q = CUa ⇒ I = Q̇ = CU̇a

2. current in circuit is constant: I = Ue
R = −CU̇a

Ua =
1

RC

∫
Ue dt + Ua(t0)

gain:

g = −ZN

Z1
= −

1
iωC

R
= − 1

iωRC

phase:

Z = Z1 + Z2 = R +
1

iωC
= R + i

(
− 1

ωC

)
tanϕ =

Im(Z)
Re(Z)

= − 1
ωRC

⇒ ϕ = arctan
(
− 1

ωRC

)

We setup an Integrator circuit with a cut-off frequency at about 500Hz.
The electronic devices used are:

1. R1 = 4.69 kΩ

2. R2 = 10.06 kΩ

3. Z1 = R1 ‖ R2 = 3200Ω

4. Z2 = 100 nF
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The cut-off frequency is defined as g(ν) = 1.

g = −Z2

Z1
= − 1

iωRC
⇒ |g| = 1

2πνRC

With this setup we achieve thus a frequency of

ν =
1

2πRC
≈ 497Hz

The phase follows the function

ϕ = arctan
(
− 1

ωRC

)
= arctan

(
− 1

ν
· 497 Hz

)
Figures 6 and 7 show the plots for gain and phase. The gain follows obviously very

perfectly the theoretical curve. Whereas the phase is completely useless. The reason for
this behaviour is unknown. Since we do not get usefull values for at least one of the circuits
we must assume that we have done a systematical error in the measurement, although it is
unclear to us what should have been done differently.
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Figure 6: gain spectrum of Integrator
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Figure 7: phase change spectrum of Integrator

2.3. Differentiator

Figure 8: differentiator circuit [8]

time dependence of output:

1. current depends on voltage: Q = CUe ⇒ I = Q̇ = CU̇e

2. current in circuit is constant: I = −Ua
R = CU̇e

Ua = −RC · U̇e

gain:

g = −ZN

Z1
= − R

1
iωC

= −iωRC
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phase:

Z = Z1 + Z2 = R +
1

iωC
= R + i

(
− 1

ωC

)
tanϕ =

Im(Z)
Re(Z)

= − 1
ωRC

⇒ ϕ = arctan
(
− 1

ωRC

)

We setup an Differentiator circuit with a cut-off frequency at about 5000 Hz.
The electronic devices used are:

1. R1 = 4.69 kΩ

2. R2 = 10.07 kΩ

3. Z2 = R1 ‖ R2 = 3200Ω

4. Z1 = 10nF

The cut-off frequency is defined as g(ν) = 1.

g = −Z2

Z1
= −iωRC ⇒ |g| = 2πνRC

With this setup we achieve thus a frequency of

ν =
1

2πRC
≈ 4970Hz

The phase follows the function

ϕ = arctan
(
− 1

ωRC

)
= arctan

(
− 1

ν
· 4970 Hz

)
Figures 9 and 10 show the plots for gain and phase. The plot of gain proves the increase

in gain with frequency as predicted by the theory. The decrease starting at about 20 kHz
is due to the inherent properties of the operational amplifier. This decrease has the same
origin as the one that we observed in section 2.1 on page 5. The phase however does not
coincidence with the theory as already discussed in section 2.2 on page 8.

10



 0

 1

 2

 3

 4

 5

 6

 0.1  1  10  100  1000

ga
in

frequency / kHz

experiment
theory

Figure 9: gain spectrum of Differentiator
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Figure 10: phase change spectrum of Differentiator
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2.4. PID servo

Figure 11: PID controller circuit [8]

Calculation of gain

Z1 =

(
1

R1
+

1
1

iωCD

)−1

=
R1 · 1

iωCD

R1 + 1
iωCD

=
R1

iωR1CD + 1

Z2 = R2 +
1

iωCI

inserted in the gain definition

g = −Z2

Z1
= − 1

R1

(
R2 +

1
iωCI

)
(iωR1CD + 1)

= −
[
R2

R1
+

CD

CI
+ i

(
ωR2CD +

1
ωR1CI

)]
assuming CD

CI
� R2

R1

g = −R2

R1

[
1 + i

(
ωR1CD +

1
ωR2CI

)]

Calculation of phase:

Z = Z1 + Z2 =
R1

iωR1CD + 1
+ R2 +

1
iωCI

=
R1

1 + (ωR1CD)2
+ R2 + i

{
− ωCDR2

1

1 + (ωR1CD)2
− 1

ωCI

}
tanϕ =

Im(Z)
Re(Z)

= . . . =
ω2R2

1CD(CI − 1)− 1
R1 + R2 + ω2R2

1R2C2
D
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Figure 12: Bode diagram of a PID controller [8]

We combine the three servos to a PID servo.
The electronic devices used are:

1. R1 = 3.18 kΩ = 10 kΩ ‖ 4.7 kΩ

2. R2 = 3.18 kΩ = 10 kΩ ‖ 4.7 kΩ

3. CI = 100 nF

4. CD = 10nF

Here we have now two cut-off frequencies at νI = 497Hz and νD = 4970Hz.
The gain follows

g = −
[
R2

R1
+

CD

CI
+ i

(
ωR2CD +

1
ωR1CI

)]

|g(ν)| =

{
(1.1)2 +

(
1

4970 Hz
· ν +

497 Hz
ν

)2
}−1/2

The phase follows the function

ϕ = arctan

(
ω2R2

1CD(CI − 1)− 1
R1 + R2 + ω2R2

1R2C2
D

)
= arctan

( −ω2 · 1.011− 1
6360 + 1.011 · 108 · ω2

)
Figures 13 and 14 show the plots for gain and phase. The plot of gain proves the combined

behaviour of all three circuits; The decrease of the Integrator, the constant gain of the
inverting amplifier and the increase of the Differentiator. The decrease starting at about 20
kHz is due to the inherent properties of the Operation amplifier. The phase however does
not coincidence with the theory as earlier discussed.
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3. Digitizing and spectral analysis

3.1. Fourier transformation (theory)

3.1.1. Fourier series

The general idea behind Fourier series is that, any periodic function f(x + Tp) = f(x) can
be expressed as an infinite series of harmonic components.

different notations

1. normal

f(t) =
a0

2
+
∞∑

n=1

(an cos ωnt + bn sinωnt)

2. complex format

f(t) =
a0

2
+

∞∑
n=−∞

cneiωnt with cn =
1
T

T/2∫
−T/2

f(t)e−iωnt dt

3. amplitude/phase format

f(t) =
a0

2
+
∞∑

n=1

cn sin (ωnt + Ψn)

amplitude: cn =
√

a2
n + b2

n

phases: tanΨn = an/bn

Due to the orthogonal relations of the sine and cosine functions the coefficients can be
expressed as

an =
2
T

T/2∫
−T/2

f(t) cos ωnt dt

bn =
2
T

T/2∫
−T/2

f(t) sinωnt dt

a0 =
2
T

T/2∫
−T/2

f(t) dt

with ωn = n · 2π
T
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3.1.2. Fourier transformation

For nonperiodic signals and for sections of periodic signals one uses the Fourier transforma-
tion instead of the Fourier series. The Fourier transformation and its backtransformation
are defined as follows

H(ω) =
1√
2π

∞∫
−∞

e−iωth(t) dt

h(t) =
1√
2π

∞∫
−∞

eiωtH(ω) dω

A very common way to describe the Fourier transformation is the following

F {h(t)} = H(ω)

3.1.3. discrete Fourier transformation

In the most common situtation, the signal (denoted with h(t)) is sampled (i.e., its value
is recorded) at evenly spaced intervals in time. Let ∆ denote the time interval between
consecutive samples. The reciprocal of the time interval ∆ is called the sampling rate.

The idea of discrete Fourier transformation is to estimate the Fourier transform of a
function from a finite number of its sampled points. We can suppose that we have N
consecutive sampled values hk, at k = 0, 1, 2, . . . , N − 1 and denote the interval ∆.

With N numbers of input, we will evidently only be able to produce no more than N
independent number of output. So, instead of trying to estimate the Fourier transform
H(ω) at all values of ω, we seek estimates only at the discrete values:

νn ≡
n

N∆
n = −N

2
, . . . ,

N

2
The remaining step is to approximate the integral by a discrete sum:

F {h(t)} =

∞∫
−∞

h(t)eiωnt dt ≈
N−1∑
k=0

hkeiωn∆∆ = ∆
N−1∑
k=0

hkeikn/N
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The discrete Fourier transform maps N complex numbers (the hk’s) into N complex num-
bers (the Hk’s) It does not depend on any dimensional parameter, such as the time scale
∆.

3.1.4. fast Fourier transformation

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm which reduces
the number of computations needed for N points from 2N2 to 2N lgN , where lg is the
base-2 logarithm. The increase of speed relies on the avoidance of multiple calculations of
values that cancel out each other. [1, 2]

3.2. Sampling rates / sampling theorem

The question is, what is the lowest sampling rate at which the signal can be reconstructed
error-free? One would expect that if the signal has significant variation then the interval
∆ must be small enough to provide an accurate approximation of the signal. Significant
signal variation usually implies that high frequency components are present in the signal.
It could therefore be inferred that the higher the frequency of the components present in
the signal, the higher the sampling rate should be. [7]

3.2.1. Nyquist Frequency

For any sampling interval ∆ there is a critical frequency called the Nyquist Frequency given
by

νc ≡
1

2∆
= 2νsignal (1)

which means, that it is necessary to sample more than twice as fast as the highest waveform
frequency ν. This is the cutoff frequency above which a signal must be sampled in order
to be able to fully reconstruct it. [4]

This also implies that no information is lost if a signal is sampled at the Nyquist fre-
quency, and no additional information is gained by sampling faster than this rate.

Nyquist Frequency
below Nyquist Frequency
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3.2.2. Sampling theorem

Under Fourier transformation the sampling of a nonperiodic function will be mapped into
a periodic function with periodicy of the sampling frequency νs. Thus the spectrum is
identical with the original function in the range −1

2νs ≤ ν ≤ 1
2νs as shown in figure 15. It

follows thereby that the sampling frequency must be chosen so high, that the periodically
recurring spectra do not overlap. This is called the ‘sampling theorem’.

The sampling theorem states that a band-limited baseband signal must be sampled at
a rate ν ≥ 2B. (B: Bandwidth) to be reconstructed fully. If the sampling rate is not high
enough to sample the signal correctly then a phenomenon called aliasing occurs. [5]

Figure 15: spectrum of input before and after sampling. (fa = νS) [8]

We record a sine shaped signal with the computer oscilloscope using different sampling
rates, and take record of the frequency (resp. the time interval). The signal frequency used
is approximately 1 kHz (1.0083 kHz).

Note: The sampling rate presented by the oscilloscope is in units of ms / division. Since
it has 10 divisions the whole sampling range has been corrected by a number of ten.

sampling rate / ms ∆ T / ms frequency

0.02 1.004 0.996 kHz
0.05 0.990 1.010 kHz
0.1 1.005 0.995 kHz
0.2 0.984 1.016 kHz
0.5 1.000 1.000 kHz
1 1.010 0.990 kHz
2 0.940 1.064 kHz
5 219 4.566 Hz
10 110 9.132 Hz
20 189 5.291 Hz
50 286 3.497 Hz

Table 2: frequency for different sampling rates

The Nyquist Frequency for 1 kHz is ∆ = 1
2ν = 0.5 ms. In table 2 we can see that we measure

correct frequencies for 10 times higher values. Below the sampling rate of 0.5 ms however the
sine shape breaks down completely. Far below the Nyquist Frequency we get a sine shape
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signal again, but now with a 1000 times lower frequency. This is due to aliasing. This effect
is shown on page 17.

Exemplarily we have taken pictures of the oscilloscope for sampling rates of 0.1, 0.5, 2,
100 ms. They are labelled with page 1 to 4 and can be found in the appendix.

3.3. Aliasing

Given a power spectrum (a plot of power vs. frequency), aliasing is a false translation of
power falling in some frequency range (−fc, fc) outside the range. Aliasing can be caused
by discrete sampling below the Nyquist frequency. [3]

Figure 16: Example of aliased spectrum

We setup a bandwidth of 2 kHz and a frequency of 1 kHz and increased then the frequency
slowly but continuously up to 5 kHz. Inbetween we have recorded some sample frequencies.
They are shown in table 3.

frequency / kHz

real measured distance

1.00 1.00 0.00
2.53 1.47 1.06
3.01 0.99 2.02
3.52 0.48 3.04
4.03 0.03 4.00
4.51 0.51 4.00
5.06 1.06 4.00

Table 3: Aliasing

What we see now, if one increases the frequency above the bandwidth is, that it seems that
the peak of the spectrum bounces back from each side of the wall. This is due to the aliasing
introduced above. Table 3 shows this behaviour very clearly. The distance between the real
and the measured value is n-times half of the bandwidth which coincidences with saying that
the peak is mapped back into the range if it exceeds the bandwidth limit.
Furthermore we have taken a look at the spectrum of a rectangular wave under conditions of
aliasing. The frequency is 2 kHz. Apart from the center frequency ω0 we get additional peaks
with declining amplitude at 3ω0, 5ω0, 7ω0 and so forth. Page 6 (in the appendix) shows the
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spectrum with a bandwidth of 2 kHz. Because of the backreflection all peaks appear in the
center and form the high background. A similarly spectrum can be found with a bandwidth
of 500 Hz (page 7). Here all the peaks overlap near zero because it is half of the original
frequency.

The false spectrum becomes even more obvious when we use a bandwidth which is not two
times an integer number of the frequency as with ν = 338.81 Hz and badnwidth B = 5 kHz.
This is shown on page 8. The in-between peaks have their origin in the aliasing effect and
lead thus to an false spectrum. This behaviour is even increased with a bandwidth of 100 Hz
and frequency of 1 kHz (page 9). Here the difference between the ‘main’ peaks amounts only
5 Hz instead of 2000 Hz !

At least we take a look at the spectrum of a triangular signal with frequency of 1 kHz
and bandwidth 2 kHz (page 10). One should expect a picture like the one on page 6 for the
rectangular signal. This picture however can easily be mistaken with sine signal as on page
5. The faster decrease of the amplitude leads to a much lower background, so that we see
only one peak.
The shown examples demonstrate very clearly why it is very important to choose the correct
bandwidth to record the correct spectrum. To get around of the aliasing effect filters are
very common to reduce the bandwidth-passing frequencies.
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3.4. Spectral analysis of sine, rectangular and triangular signals

3.4.1. sine

A perfect sine signal with 1 kHz is sampled with a bandwidth of 2 kHz. The recorded spec-
trum can be seen on page 5 of our records. It shows one peak at the expected 1 kHz frequency.
The observation is thus identical with the expected mathematical Fourier representation.

3.4.2. rectangular

rectangular sawtooth

f(t) =

{
−A −T

2 < t < 0
A 0 < t < T

2

The Fourier components are calculated using a computer-based algebra solution.

a0 = 0
an = 0

bn =
2A

πn

(
cos(nπ)− 1

)
⇒ n = 1, 3, 5, . . .

The first factor vanishes because the function is symmetric around the y-axis. The second
component is zero because the function is even.

Thus follows

f(t) =
2A

π

∞∑
n=1

1
n

sin
(
(2n− 1)ω0t

)
(2)

This means that we observe a spectrum with declining amplitude by 1
n in distances of 2ω0.
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We have taken records of a rectangular signal with 1 kHz on a range of 10 kHz. The peaks
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with amplitude and frequency are shown in table 4. A corresponding picture is on page 11
in the appendix. The accuracy of the data is 20 Hz and 16 mV.

ν /kHz amplitude / V

0.996 3.484
3.008 1.250
5.020 0.625
7.031 0.578
9.004 0.406

Table 4: rectangular sawtooth spectrum

Figure 17 shows the corresponding plot. The 1
n decrease of the amplitude can be shown

although it is not perfectly matched with the data. Likewise the spectrum is shown very
well. We see peaks with distances of 2ω0 at ω0, 3ω0, 5ω0 and so forth.
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Figure 17: rectangular sawtooth spectrum

3.4.3. triangular

triangular sawtooth

f(t) =


4A

T
t 0 < t < T

4

2A(1− 2
T t) T

4 < t < 3
2T

−4A(1− 1
T t) 3

4T < t < T
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The Fourier components are calculated using a computer-based algebra solution.

a0 = 0
an = 0

bn =
8A

n2π2
sin (1/2nπ) ⇒ n = 1, 3, 5, . . .

Thus follows

f(t) =
8A

π2

∞∑
n=1

(−1)2n+1 1
n2

sin
(
(2n− 1)ω0t

)
(3)

The spectrum differs from the rectangular sawtooth mainly by the faster decline of 1
n2 .
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We have taken records of a triangular signal with 1 kHz on a range of 10 kHz. The peaks
with amplitude and frequency are shown in table 5. A corresponding picture is on page 12
in the appendix.

ν /kHz amplitude / mV

1.016 2219
3.008 266
5.000 78.10
7.031 46.87
8.984 31.25

Table 5: triangular sawtooth spectrum

Figure 18 shows the corresponding plot. The 1
n2 decrease of the amplitude is perfectly

matched. Likewise the spectrum is shown very well. We see peaks with distances of 2ω0 at
ω0, 3ω0, 5ω0 and so forth.
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Figure 18: triangular sawtooth spectrum

3.5. Overloading of the Op-amplifiers

We setup the Inverting amplifier as it had been constructed in section 2.1 and connect the
output to the oscilloscope/spectrum analyser. The input signal is a sine from the function
generator. To overload the amplifier we simply increase the output amplitude of the function
generator. What then happens is that the sine curve changes to a rectangular curve, because
the upper and lower part is cut-off. Inbetween the shape is not a perfect rectangular . This
can be observed in the spectrum analyser. When the signal starts to overload (not a perfect
rectangular) the spectrum has peaks at ω, 2ω, 3ω and so forth, decreasing with frequency.
Under increase of the output signal the shape becomes more and more a perfect rectangular
and in the spectrum the even peaks decrease until they vanish completely whereas the odd
peaks increase.
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4. Modulation

4.1. Frequency modulation (FM)
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Figure 19: example of FM modulation with ωc = 15, ωm = 2, β = 5

A Frequency Modulated wave is a sine wave with a periodically varying instantaneous
frequency and a constant amplitude. The average frequency is called the carrier frequency
and the instantaneous frequency changes at the modulation frequency. The maximum
excursion of the instantaneous frequency from the average is related to the modulation
index.
Genrerally a signal is described as

S(t) = A cos
(
Φ(t)

)
with amplitude A and phase Φ(t). The frequency is defined as

ω ≡ dΦ
dt

In case of frequency modulation this is

ω = ωc + ∆ωm(t)

with carrier ωc, modulation frequency m(t) and its amplitude ∆ω. Accordingly is the
signal is of the form

S(t) = A cos
(

ωct + ∆ω

t∫
0

m(t) dt

)

It is assumed, that the signal m(t) is normalized so that the maximum of the integral is
one.
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For a modulation signal of the form

m(t) = cos(ωmt)

the time dependent frequency is

ω = ωc + ∆ω cos(ωmt)

and the phase

Φ = ωct +
∆ω

ωm
cos(ωmt)

The ratio β = ∆ω
ωm

is called the modulation index.
The entire expression is thus

S(t) = A cos
(
ωct + β sin(ωmt)

)
(4)

The frequency spectrum can be found by rewriting the above expression as a sum of
components of constant frequency using the properties of the Bessel Functions. This gives:

S(t) = A
{
J0(β) sin(ωct)

+ J1(β) [sin(ωc + ωm)t− sin(ωc − ωm)t]
+ J2(β) [sin(ωc + 2ωm)t + sin(ωc − 2ωm)t]
+ J3(β) [sin(ωc + 3ωm)t− sin(ωc − 3ωm)t]
+ . . .

(5)

This expression implies that the FM spectrum consists of a component at ωc and an infinite
number of lines at ωc ± nωm and that the amplitude of the components are given by the
Bessel functions. [6]

We use both function generators to generate a frequency modulated signal. Thereby one
generator is the input for the other generator.

To observe the effect of frequency modulation on the oscilloscope we scanned a few varieties
of frequencies and modulation indices. Finally we have set up a carrier frequency of 25 kHz
and a modulation frequency of 625 Hz with a high amplitude of the modulation signal (high
modulation index). The plot can be found on page 13 in the appendix. In the range where
the frequency goes to zero the modulation value is the highest, whereas in the other range
the wave of the modulation goes through zero and thus the frequency is more or less the
carrier frequency. If one increases the amplitude the number of periods will increase, but the
overall shape stays the same. The according spectrum has equal high and low frequencies
(white spectrum).

To observe a typical FM spectrum we had to reduce the amplitude of the modulation
signal by 20 dB. The carrier frequency is now set to 25 kHz and the modulation frequency
to 5 kHz. If we vary the modulation index (resp. the modulation-amplitude) we find that
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with low modulation index we have only the peak from the carrier signal. Whereas when we
increase the modulation index the carrier peak in the middle decreases and symmetrically
peaks appear on both sides growing with frequency. This behaviour is shown on pages 14-16
in the appendix. (Note: The printout of the last page is did not match with the screen. The
low amplitude of the peaks is due to the program or the printer)

Finally we are interested in the spacing between the peaks. The expansion into Besselfunc-
tions shows that we should expect an equal spacing between the peaks by the modulation
frequency independently of the modulation index. Therefore we have measured the spacing
for different indices. The data is shown in table 6. One can see clearly that the spacing is
according to the theory. Pages 14-16 show the according spectrum.

frequency peak

modulation index ω1 ω2 ω3 ω4 ω5 ω6 ω7

8.000 · 10−5 15.82 20.8 25.78 30.76 35.84
1.876 · 10−4 10.44 15.43 20.5 25.58 30.56 35.64 40.62
2.218 · 10−4 10.64 15.72 20.7 25.87 30.76 35.84 40.91

frequency peak spacing

ω2 − ω1 ω3 − ω2 ω4 − ω3 ω5 − ω4 ω6 − ω5 ω7 − ω6

8.000 · 10−5 4.98 4.98 4.98 5.08
1.876 · 10−4 4.99 5.07 5.08 4.98 5.08 4.98
2.218 · 10−4 5.08 4.98 5.17 4.89 5.08 5.07

Table 6: modulation index

4.2. Amplitude modulation (AM)
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Figure 20: Example of AM modulation with offsets in carrier and signal

In Amplitude Modulation or AM, the carrier signal

Sc(t) = A0 + A cos(ωct)
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has its amplitude A modulated by the (lower frequency) message signal m(t). We assume
a harmonic oscillating modulation

m(t) = B0 + B cos(ωmt)

Then follows for the linear amplitude modulated signal

S(t) = m(t) · S(t)
= A0B cos(ωmt) + B0A cos(ωct) + AB cos(ωct) · cos(ωmt)
= A0B cos(ωmt) + B0A cos(ωct)

+
1
2
AB cos

(
(ωc + ωm)t

)
+

1
2
AB cos

(
(ωc − ωm)t

) (6)

Hence we observe the carrier and modulation signal if their offsets are not zero and addi-
tionally we see signals at frequencies ωc + ωm and ωc − ωm.
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Figure 21: spectrum of AM modulation with offsets in carrier and signal

In the following experiments we are working with a low cost analog
multiplier ANALOG DEVICES AD633. This allows to add and multiply
signals. Hence we can use it to do the amplitude modulation.

In the beginning we had a serious problem with the AD633 device. In
the end it was not clear what the reason was, since we had disconnected
and checked everything and then connected everything in the same way.
To achieve amplitude modulation one uses the noninverting inputs 1 and 3 on the device.

On page 17 we have printed a demonstration of amplitude modulation with a carrier
frequency of 15 kHz and a modulation of 1 kHz.

To verify equation 6 for the amplitude modulation we have set the offsets A0 and B0 to
non-zero values and changed the amplitude B0 of the modulation frequency. Thus all peaks
should increase except for the carrier frequency peak. Table 7 and the according figure 22
prove this behaviour.
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amplitude / mV

modulation amplitude / V ωm ωc − ωm ωc ωc + ωm

5.00 207 437 235 465
5.94 274 549 240 588
6.94 319 667 240 712
8.13 369 774 240 819

Table 7: dependence on modulation amplitude
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Figure 22: dependence on modulation amplitude

Finally we wanted to see that the peaks of the carrier and modulation frequencies decrease
to zero without offsets on the signals. This is shown on pages 18-20 in the appendix. First
with offset on both signals, second with no offset on the carrier (modulation peak vanishes)
and third with no offset and hence no carrier or modulation peak.

4.3. Comparison of both modulation techniques

Frequency modulation (FM) depends strongly on the modulation index whereas the ampli-
tude modulation (AM) only depends on the amplitude. In FM the spectrum consists of
many peaks around the carrier where the number depends on the index. Their amplitudes
is determined by besselfunctions and thus has no linear dependence on the input amplitude.
The spacing between the peaks is determined by the modulation frequency.

Amplitude modulation contrary has two peaks in the spectrum around the carrier and
if they have offsets a peak at the carrier and modulation frequency itself. That means
especially that it is possible to have a spectrum with no frequency of the input signals! The
amplitude depends linearly on the amplitude of the input signals.
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5. Noise

Loosely, noise is a disturbance tending to interfere with the normal operation of a device or
system. It is an undesired disturbance within the frequency band of interest, that affects a
signal and may distort the information carried by the signal.

5.1. Different noise processes

A noise is a random signal of known statistical properties of amplitude, distribution,
and spectral density. Generally speaking, there are five different kinds of noise: thermal
noise, shot noise, 1/f noise (technical noise), generation and combination noise especially
in semiconductors, and white noise
Although the production mechanisms vary, generally, the noises are produced in a certain
period of time t, called the characteristic time. And the sampling time is T , f is the
sampling frequency, defined by f = 1/T . So for different t and T relationships, the spectral
dependence of the noise power ω(f) is different.

1. t � T : ω(f) ∝ f0

2. t � T : ω(f) ∝ f−2

3. t ≈ T : ω(f) ∝ f−1

For example, 1 can be white noise, 2 can be generation and recombination noise, 3 can be
technical noise P (f) ∝ f−1, for the 3, since all the noise processes should have almost the
same characteristic time, so the spectral range is quite narrow.

Thermal noise
The noise generated by thermal agitation of electrons in a conductor. The noise power is
given by

W = kT∆f

W noise power in watt, k Boltzmann’s constant in joules per kelvin, T conductor temper-
ature in kelvin, ∆f bandwidth in hertz. Especially for a RC filter

Figure 23: circuit of RC filter

W = kT
4R

1 + (fRC)2

This spectrum is shown in figure 24.
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Figure 24: spectrum of thermal noise in RC filter circuit

Shot noise
Shot noise is the time dependent fluctuations in the electrical current due to the discreteness
of the electron charge. For example, in high vacuum diode, the applied voltage is so high
that electrons are injected to anode A in a quite short period of time, the current reaches
maximum; then the high vacuum diode is saturated; after a relax time, the next ,impulse’.
So at the frequency f = 1/t, the amplitude is 0, as can be seen in figure 26.

Figure 25: Mechanism of shot noise

Figure 26: spectrum of shot noise

1/f noise(technical noise)
The power of this kind of noise decrease proportional to 1/f, as can be seen in figure 27.
1/f noise appears in nature all over the places. It’s difficult to deal with it, if you perform
a measurement at low frequencies.
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Figure 27: spectrum of technical noise noise in RC filter circuit

Generation and recombination noise
In semiconductors, there is a generation-recombination process. In the semiconductors,
carriers are freed from association with a particular atom by a generation process, which
induces the conduction. The ,uncovered’ atoms will trap carriers. Because of the thermal
energy of the crystal lattice, the trapped carrier will be freed again after only a short time.
This process is a series of independent discrete events. Each event causes fluctuation in
the number of free carriers leading to a fluctuation in the material resistance.
The frequency response is constant at low frequency with a corner at a frequency f = 1/2πt.
Above this corner the high frequency slope is proportional to 1/f2, as can be seen from
figure 28.

Figure 28: spectrum of generation and recombination noise

White noise
The noise power does not depend on frequency over a very wide frequency range, see for
example figure 29.
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Figure 29: spectrum of white noise

5.2. Spectral properties of the noise generator

We connect the output of the noise generator to the input of the spectrum analyser. In the
frequency spectrum, it can be seen that the amplitude of the power P is proportional to 1

f .
It is therefor technical noise, as can be seen from printed graph 21.

5.3. Methods to improve the signal to noise ratio

We generate a signal of frequency 5.6kHz, and then generate the noise, with a signal to noise
ratio about 1. There are two ways to improve the signal to noise ratio.

First, average over the spectrum, since the noise obeys a ramdon distribution, the mean
value tends to 0 as more spectra averaged; but the intensity of signal at a certain frequency
remains the same.

Second, a band pass filter is used to cut the noise, and then average the output from the
filter. We use the fast Fourier transformation spectrum, and average tool. The effect of
adding a filter is quite obvious, as can be seen from figure 32.

calculation of bandpass filter
The circuit used for the bandpass filter is shown in figure 30.

R

470 C

200nF

C

200nF

C

200nF

C

200nF

L

4.7mH

Figure 30: Bandpass filter circuit
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The current in the input and output circuit must be the same. This yields to

Ua

Ui
=

ZLC

R + ZLC
=

1
1 + R/ZLC

=
1

1 + R
(
iωC + 1

iωL

) =
1

1 + iR
(
ωC − 1

ωL

)
The absolute value of this is∣∣∣∣Ua

Ui

∣∣∣∣ = 1

1 + R2
(
ωC − 1

ωL

)2 =
1

1 + ω2R2C2
(
1− ω2

0
ω2

)2

with resonance frequency ω0 = 1√
LC

. The bandwidth is determinded by ∆ω = 1
RC . The

characteristic of this filter is shown in figure 31
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resonance frequency: 5191 Hz

Figure 31: Bandpass characteristic

The electronic devices we have used are:

1. R = 470Ω

2. C = 200 nF

3. L = 4.7 mH

This leads to a center frequency of ω0 = 5191Hz

How to measure the intensity of noise and signal?
Here just the region on both sides near the signal peak is measured, we get a high value where
most positive noise peaks are and a low value for the negative noise vallies, and substrate the
two values to get the difference. For each kind of average, four groups of data are recorded
and the mean value is calculated as the intensity of noise. And the middle of noise intensity
is used as the background for the correspond signal’s peak, the difference between the signal
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peak and the 0 point is the intensity of the peak. Also four groups of data are recorded to
calculate the mean value. The result can be seen in table 8.

It can be seen clearly that the average method can improve the signal to noise ratio, but
the filter improve the ratio much more significantly, so that the latter method should be used
whenever possible. For the filter method, after average over 20 times, the slope is smaller
than before, since more spectra are used to average, the longer time it takes, so we think
using the filter just average over 20 times is enough.

signal to noise ratio

average times average average+filter

1 0.97 12.60
2 1.67 16.39
5 3.11 29.28
10 4.27 53.13
20 5.75 69.63
50 9.74 104.50

Table 8: Improve signal to noise ratio
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Figure 32: Signal to noise ratio

5.4. Correlation of noise

Here we have two noise generators 1 and 2, and a function generator. The correlation is
viewed in the oscilloscope on the x-y plot, with one cable connected to the x and the other
to the y.
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Firstly, we use noise generators 1 and 2 to have two independent noise signals, connect
the output signals with cables channel 1 and channel 2. The graph is irregular, the two has
no correlation. As can be seen from printed graph 23.

Secondly, we use noise generator 1’s output as noise generator 2’ input, and connect the
output signals of 1 and 2 with oscilloscope cables. We find the fluctuation is in a certain
direction, they are part correlated. As can be seen from printed graph 24.

Thirdly, we use the function generator’s output as noise generator 1’s input, and connect
the both outputs of function generator and noise to the cables. When the amplitude of
the noise is smallest, there is a line in the screen, the slope of line changes as the signal’s
frequency changes. This means that the two output totally correlate, and the phase shift
changes with the function’s frequency. The amplitude of the noise here is so small that it
can not disturb the signal of function generator correlating with itself, its only effect is a
constant phase shift. When increase the amplitude of the noise, the shape gradually changes
from line to ellipse, now they are partially correlated. When we continuously increase the
noise amplitude, the graph is irregular again, they are not correlated at all. As can be seen
from printed graph 25.
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A. measuring data

A.1. Operational Amplifiers

frequency / kHz gain ∆T/µs phase shift / degree

0.01 10.00 48.00 · 103 172.80
0.10 10.00 4.92 · 103 177.12
1.00 10.00 490.00 176.40
10.00 10.00 47.20 169.92
20.00 9.063 31.00 223.20
40.50 4.563 16.80 244.94
60.20 3.063 11.40 247.06
80.30 2.406 6.30 182.12
100.10 2.000 2.72 98.02
150.20 1.359 1.75 94.63
200.90 1.016 1.20 86.79

Table 9: Inverting Operational Amplifier

frequency / kHz gain ∆T/ms phase shift / degree

10.55 43.34 25.6 97.23
20.46 24.67 13.4 98.70
30.75 17.00 9.2 101.84
40.58 12.67 6.7 97.88
50.86 10.17 5.4 98.87
60.90 8.83 4.4 96.47
70.00 7.67 3.9 98.78
80.49 6.40 3.4 98.52
90.84 5.66 3.0 98.11
100.32 5.21 2.7 98.23
200.80 2.67 1.3 91.08
299.20 1.79 0.8 87.25
400.40 1.33 0.6 87.93
505.20 1.03 0.5 87.3
601.80 0.83 0.4 86.66
703.10 0.73 0.3 84.03
798.60 0.62 0.3 83.95
1014.00 0.48 0.2 81.77

Table 10: Integrator circuit
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frequency / kHz gain ∆T/ms phase shift / degree

0.10 0.023 2.60 93.60
0.50 0.100 0.52 93.60
1.01 0.260 260.00 94.54
2.01 0.425 124.00 89.73
2.53 0.538 104.00 94.72
3.01 0.638 85.00 92.11
3.51 0.750 72.00 90.98
4.02 0.875 65.00 94.07
4.52 0.984 58.00 94.38
5.07 1.094 52.00 94.91
5.50 1.203 46.50 92.07
6.01 1.281 42.50 91.95
10.08 2.154 26.50 96.16
15.03 3.015 17.50 94.69
20.08 5.106 13.00 93.97
25.20 5.906 12.30 111.59
30.34 4.860 9.60 104.86
35.24 4.183 7.80 98.95
40.11 3.691 6.60 95.30
50.08 2.892 4.90 88.34
60.88 2.430 4.20 92.05
70.36 2.154 3.95 100.05
80.24 1.907 3.05 88.10
90.87 1.661 2.70 88.33
100.48 1.507 2.40 86.81
150.02 1.031 1.55 83.71
200.43 0.769 1.20 86.59

Table 11: Differentiator circuit
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frequency / Hz gain ∆T/ms phase shift / degree

101.1 4.67 2.880 104.82
203.7 2.64 1.600 117.33
301.8 1.97 1.150 124.95
402.9 1.64 0.930 134.89
500.0 1.42 0.770 138.60
604.1 1.33 0.660 143.53
703.8 1.26 0.824 208.78
796.5 1.23 0.716 205.31
902.1 1.18 0.616 200.05
1011 1.17 0.456 165.97
2001 1.20 0.254 182.97
3036 1.25 0.185 202.20
4077 1.37 0.099 145.30
4997 1.51 0.075 134.92
6011 1.68 0.059 127.67
7060 1.84 0.051 128.35
8007 2.03 0.045 129.71
9021 2.27 0.036 116.91
10095 2.51 0.031 112.66
15020 6.44 0.020 109.50
20110 6.98 0.015 108.59
30390 5.15 0.012 126.91
40795 3.66 0.007 108.68

Table 12: PID circuit
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B. printout

page description

1. sampling rate: 0.1 ms
2. sampling rate: 0.5 ms
3. sampling rate: 2.0 ms
4. sampling rate: 0.1 s

5. sine signal
6. rectangular signal; frequency 1 kHz; bandwidth 2 kHz
7. rectangular signal; frequency 1 kHz; bandwidth 0.5 kHz
8. rectangular signal; frequency 338.81 Hz; bandwidth 5 kHz
9. rectangular signal; frequency 1 kHz; bandwidth 0.1 kHz
10. triangular signal; frequency 1 kHz; bandwidth 2 kHz
11. rectangular signal; frequency 1 kHz; bandwidth 10 kHz
12. triangular signal; frequency 1 kHz; bandwidth 10 kHz

13. frequency modulation
14. frequency modulation spectrum with 5 kHz range; modulation index: 0.4 V
15. frequency modulation spectrum with 5 kHz range; modulation index: 0.938 V
16. frequency modulation spectrum with 5 kHz range; modulation index: 1.109 V

17. amplitude modulation with 15 kHz and 1 kHz
18. amplitude modulation spectrum with offset on both signals
19. amplitude modulation spectrum with no offset on carrier signal
20. amplitude modulation spectrum with no offset on both signals

21. noise spectrum
22. signal with noise spectrum with bandwidth filter
23. correlation x-y plot: uncorrelated
24. correlation x-y plot: partially correlated
25. correlation x-y plot: correlated with 180 degree phase shift

Table 13: List of printed pages
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